- Continuous Mapping Theorem
- ncontinuous mapping theorem (CMT)
Deutsch-Englisches Wörterbuch. 2015.
Deutsch-Englisches Wörterbuch. 2015.
Continuous mapping theorem — In probability theory, the continuous mapping theorem states that continuous functions are limit preserving even if their arguments are sequences of random variables. A continuous function, in Heine’s definition, is such a function that maps… … Wikipedia
Open mapping theorem — may refer to: Open mapping theorem (functional analysis) or Banach–Schauder theorem states that a surjective continuous linear transformation of a Banach space X onto a Banach space Y is an open mapping Open mapping theorem (complex analysis)… … Wikipedia
Riemann mapping theorem — In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto … Wikipedia
Open mapping theorem (functional analysis) — In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a continuous linear operator between Banach spaces is… … Wikipedia
Degree of a continuous mapping — This article is about the term degree as used in algebraic topology. For other uses, see degree (mathematics). A degree two map of a sphere onto itself. In topology, the degree is a numerical invariant that describes a continuous mapping between… … Wikipedia
Open mapping theorem (complex analysis) — In complex analysis, the open mapping theorem states that if U is a connected open subset of the complex plane C and f : U → C is a non constant holomorphic function, then f is an open map (i.e. it sends open subsets of U to open subsets of… … Wikipedia
Vietoris–Begle mapping theorem — The Vietoris–Begle mapping theorem is a result in the mathematical field of algebraic topology. It is named for Leopold Vietoris and Edward G. Begle. The statement of the theorem, below, is as formulated by Stephen Smale.TheoremLet X and Y be… … Wikipedia
Slutsky's theorem — In mathematics, in particular probability theory, Slutsky s theorem [ cite book last = Grimmett first = G. coauthors = Stirzaker, D. title = Probability and Random Processes year = 2001 publisher = Oxford pages = 3rd ed., exercise 7.2.5 ] , named … Wikipedia
Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… … Wikipedia
Continuous functional calculus — In mathematics, the continuous functional calculus of operator theory and C* algebra theory allows applications of continuous functions to normal elements of a C* algebra. More precisely, Theorem. Let x be a normal element of a C* algebra A with… … Wikipedia
Lefschetz fixed-point theorem — In mathematics, the Lefschetz fixed point theorem is a formula that counts the number of fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X . It … Wikipedia